PH1

Question			Marking details	Marks Available
1	(a)	(i)	$I \propto V(1)$	
			Providing the temperature / physical conditions remain constant (1)	2
		(ii)	V A ⁻¹ circled	1
	(b)	(i)	Switch combination PQS	
			X open, Y open On On Off	
			X closed, Y open Off On Off (1)	
			X open, Y closed On On On (1)	
			X closed, Y closed Off On On (1)	
		(ii)	Either $R = \frac{9}{0.18}$ (1) (= 50 Ω) $\rightarrow R_P + R_Q = 50$ (1)	3
			R_{each} buzzer = 25[Ω] (1) ecf between 2 nd and 3 rd marks Or $R = \frac{4.5 (1)}{0.18}$ (1) = 25[Ω] (1)	3
		(iii)	$R_{\text{Total}} = 16\frac{2}{3} [\Omega] (1)$ $I = \frac{9}{16\frac{2}{3}} = 0.54 [A] (1)$ ecf from (b)(ii) / no ecf for R_{Total}	2
		(iv)	Either ecf from (b)(ii) or (b)(iii) or both	
			$P_{\rm S} = \left(\frac{2}{3} \times 0.54\right)^2 \times 25$ (1) $P_{\rm S} = 3.24$ [W]	
			$P_{\rm Q} = \left(\frac{1}{3} \times 0.54\right)^2 \times 25$ (1) $P_{\rm Q} = 0.81$ [W]	
			<u>Or</u>	
			$P_{\rm S} = \frac{9^2}{25} \ (1) = 3.24 \ [W]$ $P_{\rm Q} = \frac{4.5^2}{25} \ (1) = 0.81 \ [W]$	
			<u>Or</u>	
			$P_{\rm S} = \frac{2}{3} \times 0.54 \times 9 \ (1) = 3.24 \ [W] P_{\rm Q} = \frac{1}{3} \times 0.54 \times 4.5 \ (1) = 0.81 \ [W]$	
			$\rightarrow \frac{3.24}{0.81} = 4 (1)$ or any correct algebraic solution = 3 marks	3
			Question 1 total	[14]

Question			Marking details	Marks Available
2	(a)		A <u>material</u> with <u>zero/negligible</u> resistance	1
	(b)	(i)	Transition temperature (accept critical temperature)	1
	(c)	(ii)	Transition temperature Shape Shape - straight line, nearly vertical drop. (T) If axes labelled, must be correct. 0 / negligible / almost zero Collisions between free/delocalised/flowing/conducting electrons and ions/atoms in lattice/atoms/particles (1) increase vibrations of ions /atoms / particles 0r electrons transfer KE to ions (1) Question 2 Total	2 1 2 [7]

Question			Marking details	Marks Available
3	(a)	(i)	12 Joules per coulomb (1)	
			Supplied from cell / source / battery / chemical to electrical (1)	2
		(ii)	Energy lost in the resistance of cell	1
	<i>(b)</i>		$\left\{ \frac{3.6(1)}{120} \right\} = 0.03 [\Omega] (1)$	2
	(c)		$I = \frac{12}{0.03} = 400 [A]$ ecf from (b)	1
	(d)	(i)	$Q = 3 \times [(16 \times 60^2) \text{ or } 57 600 (1)]$	
			= 172800 [C] (1)	2
		(ii)	$t = \frac{172,800}{120}$ = 1440 seconds / 24 mins UNIT mark	1
			Allow ecf from (d) (i)	
			Question 3 Total	[9]

Question			Marking details	Marks Available
6	(a)	(i)	A	
		(ii)	Circuit (without voltmeter and ammeter) (1) Voltmeter and Ammeter correctly positioned (1) $R = \frac{10}{0.9}$ = 11.11 [\Omega] (1) $A = 3.14 \times 10^{-8}$ [m ²] (1)	2
		(iii)	$\rho = \frac{11.11 \times 3.14 \times 10^{-8}}{3.2}$ (1) substitution $\rho = 1.09 \times 10^{-7} [\Omega \text{ m}]$ (1) ecf for R and A Platinum and Tin	4
	(b)		$\rho = \frac{0.74 \times 10^{-3}}{(3.14 \times 10^{-8} \times 3.2)(1)} = 7365 \text{ [kg m}^{-3}\text{] (1) ecf for A}$ Tin (1) ecf from density value Question 6 Total	3 [10]

PH2

Ques	stion		Marking details	Marks Available
1	(a)	(i)	I. 2.0 [m] / 2.5 or <u>clear</u> equivalent	1
			II. The same	1
		(ii)	I. $5.0 \mathrm{Hz}/\mathrm{s}^{-1} \mathrm{UNIT}$	1
			II. PARTICLE B O.1 O.2 O.4 time/s	
			Same f and A (1) Delayed by $\frac{1}{4}$ cycle (1)	2
		(iii)	4.0 [m s ⁻¹] ecf	1
	(b)		Statement that f doesn't change (1), or working based on this principle (e.g. $v = 5.0$ [Hz] x 0.60 [m]) $v = 3.0$ [m s ⁻¹] (1) ecf	2
			Question 1 total	[8]

Question			Marking details	Marks Available
2	(a)		Waves arrive in phase at P. (1) Accept twin graphs: displacement along paths or displacement versus time at P.	
			This occurs if path difference = $[0]$, λ , 2λ (1) Accept $n\lambda$	2
	(b)	(i)	Insertion of a, D and y into $\lambda = \frac{dy}{D}$, even if powers of 10 incorrect. (1)	
			$\lambda = 600 \text{ n[m]} (1)$	2
		(ii)	Beams (fringes, orders):	2
			brighter / sharper or more defined or narrower / further apart / slit separation more accurately known (Any 2 x (1))	2
			Question 2 total	[6]

Question			Marking details	Marks Available
3	(a)		$[L]$ $\stackrel{\overset{\lambda}{\leftarrow}}{\leftarrow} \lambda \xrightarrow{Or} (1)$	
			Convincing algebra, e.g. $n \frac{\lambda}{2} = L(1)$	2
	(b)	(i)	When $\lambda = 820.0 \text{ nm}, \frac{2L}{\lambda} = 500 (1)$	
			When $\lambda = 821.0$ nm, $\frac{2L}{\lambda} = 499.4$ (1) (Give 1 mark if same arithmetical error in both)	2
		(ii)	n = 499.00 (1) ecf [or by implication]	
			$\lambda = 821.60 \text{ [nm] (1)}$ No mark if previous mark not given.	2
	(c)		Less amplitude [or fewer photons] reflected back from [partially reflecting] mirror than arrive at it. (1) + (1) of the following:	
			 Mirror not a proper node Amplitudes of progressive waves travelling in opposite directions not equal. (Except near fully reflecting mirror). 	2
			Question 3 total	[8]

Question			Marking details	Marks Available
4	(a)	(i)	1.55 $\sin c = 1.00 \sin 90^{\circ} (1)$ [or equivalent, or by implication] $c = 40^{\circ} (1)$ First reflection (1) No ecf Rest of path (1)	2 2
	(b)	(i)	1.55 $\sin 45^\circ = 1.33 \sin w$ (1) [or equivalent, or by implication] $w = 56^\circ$ (1)	2
		(ii)	Bends as shown	1
		(iii)	[Sensor at] Q receives more light when water level drops and exposes lower end of rod to the air. No ecf if paths badly wrong.	1
			Question 4 Total	[8]

Question			Marking details	Marks Available
5	(a)	(i) (ii)	$d = v \times t (1)$ [Attempt to use, or by implication] $v = \frac{3.00 \times 10^8}{1.50} \text{ [m s}^{-1}] (1)$ $d = 1600 \text{ [m]} (1) \text{ [Omission of } n \text{ (giving 2400 [m]) loses 1]}$ Arithmetical error loses 1 mark. Zig-zag routes [take] longer than straight. (1) $(1) \text{ For one of the following:}$	3
			 Good diagram (angles equal by eye) A continuous <u>range</u> of zig-zag routes, all of different lengths 	2
	<i>(b)</i>	(i)	$0.14 [\mu s]$ [$\pm 0.02 \mu s$]	1
		(ii)	PULSE AT A PULSE AT B light power 0 0.1 0.2 0.3 time / µs leading edge 1 mark for the correct pulse on each graph. ecf from (b)(i)	2
			Question 5 Total	[8]

Que	Question		Marking details	Marks Available
6	(a)	(i)	Maximum k.e. of emitted / photo electrons	
		(ii)	Energy of a photon[s]	1
		(iii)	[Minimum] energy needed to remove electron [from surface]. Don't	1
		(111)	accept from an atom	1
	<i>(b)</i>	(i)	I. Gradient calculation attempted (1) – no penalty for wrong powers of 10.	
			6.6 [± 0.3] x10 ⁻³⁴ [J s] (1) agreeing with working	2
			II. $f_{\text{thresh}} = 4.4 \times 10^{14} \text{ Hz}$ (1) [± 0.1x10 ¹⁴ Hz] <u>or</u> valid algebraic method	
			$\phi = 2.9 \times 10^{-19} \text{ J UNIT (1)}$ ecf	2
		(ii)	I.	
			2.0 K.E.max / 10-19 J 1.0 2 3 4 5 6 7 8 9 10 frequency / 10 ¹⁴ Hz	
			Correct point (1), parallel line (1)	2
				1
			L J	
			III. Lithium has higher work function / needs more energy to remove an electron	1
			Question 6 Total	[11]

Que	Question		Marking details	Marks Available
7	(a)	(i)	P and U: zero or very low and / or O: 100%	1
		(ii)	Absorption (accept excitation) (1): electron promoted from O to U (1)	2
	(b)	(i)	More electrons in U than O or more electrons in higher level	1
		(ii)	level P level U $2.10 \times 10^{-19} \text{ J}$	1
			level O 0 (ground state)	
		(iii)	Incident (or by implication) <u>photons</u> (1) causes an electron to drop (1). Emitting photon: so two photons where one previously (or by implication) (1).	
			(1) For one of the following:	
			 Atom / electron drops [from U] to O. Incident photon energy must be 2.10 x 10⁻¹⁹ J or equivalent Process happens repeatedly as photons traverse cavity to and fro Stimulated photon in phase with incident photon 	4
		(iv)	$\lambda = \frac{hc}{\Delta E}$ or $\lambda = \frac{c}{f}$ and $f = \frac{\Delta E}{h}$ or equivalent or by implication (1)	
			$\lambda = 950 \text{ n[m]} (1)$	2
	(c)		Electrons in lower level drop [spontaneously] to ground state (1) (accept de-excite)	
			Making population inversion easier to maintain or lowering number of electrons in lower level or making photon absorption less likely. (1)	2
			[or equivalent]	
			Question 7 Total	[13]